
10. OPTIMIZATION AND DESIGN 

Abstract — Tolerance analysis of electromagnetic devices 

during design phase is typically performed using sensitivity 

analysis or approximate statistical characterization to predict 

(or assess) the performance of devices before production. Both 

methods present well known advantages and drawbacks. A 

quick tool for statistical analysis, combining both methods, is 

presented in this digest, based on approximate expressions for 

statistical moments of performance functions, taking 

advantage of their Taylor expansion. The approach is 

demonstrated in this digest by assessing the uniformity of the 

magnetic field created by a pair of Helmotz coils, affected by 

manufacturing and assembly errors. 

I. INTRODUCTION 

In the early design phases of electromagnetic devices, 

limited complexity models must be used, mainly focused on 

the description of their “nominal” behaviour. Unfortunately, 

in the practical realisations of devices, due to construction 

and assembling tolerances, the actual behaviour differs 

from the optimal one; in addition, during the normal 

operations, aging and unpredicted effects induce differences 

in the device operations, which may alter significantly its 

use [1-3]. In such cases, performance degradation has to be 

expected; consequently, tolerance assessment or even 

robust design must be considered before manufacturing 

phase. On the other hand, the treatment of the assembling 

tolerances implies a relevant impact on the computational 

cost because the local behaviour of the performance 

function F   must be analysed for each design solution (see 

for instance [1]). The increase of the computational load 

can become too high for the available computing resources, 

especially in the robust design, when the number of 

“uncertain” parameters may be high. Therefore, techniques 

for the reduction of the computational burden are crucial.  

Aim of the paper is to propose a strategy to reduce the 

computational cost of robust optimization techniques by a 

preliminary sensitivity analysis of the device performance 

with respect to parameters, both included into design 

parameters set or not, and by the successive application of 

analytical expression for stochastic moments of the device 

performance function.  

In this digest, first the required tools will be presented, 

i.e. sensitivity analysis in Sect. II and formulas for 

statistical analysis in Sect. III. Finally, to show 

effectiveness of proposed approach, an example of 

performance assessment of a simple electromagnetic device 

(a pair of Helmotz coils) is presented in Sect. IV. Helmotz 

coils have been chosen since this device is very sensitive to 

some of the design parameters; in addition, the performance 

function can be expressed in analytical form. The 

effectiveness of the approach in estimating average, 

standard deviation and worst case of the performance figure 

is demonstrated by comparing results to the same figures 

found using MonteCarlo approach.  

In the full paper, a comparison of the proposed tools with 

alternative estimators (such as those provided by unscented 

transform) will be proposed. In addition, application of the 

method to more complex electromagnetic devices (such as 

high field magnets for Nuclear Magnetic Resonance 

devices, or for Fusion Reactors), where parameters 

uncertainty are correlated each to the others, will also be 

proposed. 

II. PERFORMANCE SENSITIVITY 

In the optimal design of electromagnetic devices, the 

degrees of freedom (DOF) available to the designer are 

customarily represented using an array p. In this digest, for 

the sake of exposition, it will be assumed that all DOF are 

real numbers, i.e. p∈ℜN, where ℜ is the real field, and N is 
the number of DOF. The DOF array corresponding to the 

nominal values eventually found as the result of an optimal 

design procedure will be noted as p0, while uncertainties on 

DOF unavoidably rising as a result of manufacturing and 

assembly processes of real world devices will be noted as 

δp, and p=p0+δp. 
On the other hand, the performance of the device could 

be defined also in terms of other parameters, not available 

for optimal choice in the design phase, yet defining the 

device performance. An example of such “Uncontrolled 
Parameters” (UP) could be the magnetic permeability of 

iron parts in magnetic devices. These parameters will be 

noted as q (q∈ℜM, where M is the number of UP), their 

nominal values as q0, and their uncertainty with δq. 
As a consequence of what exposed above, the device 

performance will be expressed through a function F : 

F (p, q) : ℜN×ℜM→ℜ (1) 

The uncertainties δp and δq are in general random 
variables, each with its own statistical distribution, defined 

accordingly to the tolerance ranges. On the other hand, it 

could be reasonably expected that their relative values are 

rather small, and their effect on the device performance 

could be expressed by using the Taylor expansion of F  

with respect to δp and δq: 
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The arrays Sp and Sq are called “sensitivity arrays” (with 

respect to DOF and UP respectively); they can be computed 

using interpolation, or partial first order derivatives with 
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respect to δpi or δqi, or, finally, using covariance 
computation. Note that different interpretation could drive 

to different values, but the relevant information is in the 

relative ranking of sensitivities rather than on their precise 

values. In the following, the elements of the sensitivity 

array are computed using spline interpolation. 

III. QUICK TOOLS FOR STATISTICAL ANALYSIS OF 

TOLERANCES 

If expansion (2) can be accepted within reasonable 

accuracy limits, the uncertainty of the performance function 

in a neighborhood of the nominal design can be 

approximated by a linear function Spδp+Sqδq, whose 
statistical moments can be expressed in closed form once 

statistical moments of δp and δq are known [4]. If this is 
not the case, higher order terms must be included, without 

lack of efficiency of the approach. As an example, average 

<F> and standard deviation σF  are reported, for the case of 

uncorrelated tolerances: 
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Note that using (3) makes the evaluation of statistical 

properties of F a quick task, compatible also with 

computational efforts required in robust optimization.  

Eq. (3) includes also a 2nd order correction term for 

average, required in the case of perturbations near optimal 

values; a more complete set of approximated formulas will 

be used in the full paper [4]. 

A further figure for which a simple estimation can be 

easily recovered from sensitivities array is the worst case. 

In the hypothesis that (2) is valid in the full tolerances 

range, the device configuration providing the worst 

performance function is achieved, in the case of 

unconstrained DOF and UP, at one of the extreme points of 

the hyper-interval defined by tolerance ranges around the 

nominal configuration. The corresponding performance 

function in this case can be estimated as: 

( ) ( )max max
i iWC p i q i

i i

S p S qδ δ= +∑ ∑F  (4) 

In the case of constrained tolerances, a more 

sophisticated algorithm, called TAQS (Tolerance Analysis 

Quick Solver) must be applied. This case will be described 

in the full paper. 

IV. EXAMPLE OF APPLICATION 

In order to show capabilities of the proposed approach, a 

pair of Helmotz coils is analyzed as a test device. In 

Helmotz coils, radius of coils must be equal, and each equal 

to the distance between coils (Rc1=Rc2=2*Zc1=2*Zc2, see 

Fig. 1). This is no more valid when the effect if tolerances 

is considered, and parameters must be considered each 

different form the others.  

 

 

 

 

 

 

 

 
Fig. 1 – A pair of Helmotz coils. In the figure, coordinates of the current 

baricentre (Rc and Zc) are indicated, together with radial and axial 

thickness of the coils (WR, WZ) 
 

In this case study, the coils will be assumed massive, 

with a square footprint. The performance of the devices is 

expressed through the uniformity of the magnetic field, 

expressed as: 
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where Bz(r,z) is the axial component of the flux density, and 

rVOI is the radius of the spherical volume where uniformity 

is required. The coils have been optimized with respect to 

radius in order to achieve a desired level of uniformity (7.0 

p.p.m.), while cross section dimensions WR and WZ have 

not been included among design parameters. As a 

consequence, δp=(δRc, δZc), and δq=(δWR, δWZ).  

The nominal values are RC=0.2 m, and WR=WZ=0.01 m. 

Tolerances on all parameters have been assumed normally 

distributed around nominal value, with a standard deviation 

equal to 1.2% of the nominal value (corresponding to 90% 

of cases falling inside the tolerance range), except for the 

radius, for which a tolerance of 50 µm has been assumed, 

since uniformity is very sensitive to this parameter. Results 

of the tolerance analysis are reported in Table I, for both 

proposed approach and MonteCarlo standard analysis, 

using 10000 uniformity evaluations. Note that, since 

performance can only deteriorate due to tolerances, second 

order average estimates must be used. 
 

TABLE I – RESULTS OF STATISTICAL ANALYSIS 

Figure Quick Approach MonteCarlo 

Average Uniformity 7.31 p.p.m. 7.68 p.p.m. 

Standard Deviation 5.23 p.p.m. 4.64 p.p.m. 

Worst Case 24.13 p.p.m. 18.85 p.p.m. 
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